
An Embedded Computing Platform for Robot

Ching-Han Chen
Department of Computer Science and

Information Engineering, National Central
University

pierre@csie.ncu.edu.tw

Sz-Ting Liou
Department of Computer Science and

Information Engineering, National Central
University

955202083@csie.ncu.edu.tw

Abstract

As the robotic industry is growing boomingly, the

functionalities and system's architecture of robots are
more and more complex. The development of robotic
application system becomes a time-consuming and
difficult task. In this paper, we propose an embedded
computing platform for intelligent robot, and then
design a reliable real-time operating system (RTOS)
on the platform for rapid developing intelligent robotic
applications. The proposed embedded computing
platform includes a reconfigurable 8-bits processor
core and some robot-dedicated hardware intellectual
property (IP) which can be generated and
reconfigured easily. Based on the embedded processor
core, a real-time OS, uC/OS-II, is ported to this
platform. The RTOS is adjusted and optimized due to
the robot-specific requirements and the hardware
resources constrains. Finally, a simple example is
applied to demonstrate the software/hardware
(SW/HW) co-design flow based on the proposed
platform.

Keywords: Intelligent robot, Embedded Computing
Platform, RTOS, Reconfigurable, SW/HW co-design

1. Introduction

The research of robotics is originated in 1970’s. The
purpose of robot’s utilization is to replace manpower
efficiently, and increase the factory’s manufacture
ability. Its purpose was using the efficiency of robot to
take the place of manpower and increase factory
output. With the advancement of science and
technology, robots have been moving out from
laboratory and existed in our daily life. Furthermore,
researchers, biologist, mechanical engineer and
scientist of robotics, cooperate together to do the
robotic research with the perspective of biomimetic
approach. The research involves creating biomimetic

and behavior-based robots that bring an upsurge of the
study in robot and evolve into some topics of
intelligent robot research [1]-[4].

The robotic system is growing extensively in recent
years. Many kinds of robot (e.g., Humanoid Robot,
Security Guard Robot, Home Robot, Entertainment
Robot, etc.) are manufactured rapidly into the market.
The development cycle must be very short, and letting
the robot into market on time become available;
however, the complexity of applications for robotic
system is increasing day by day. In order to create a
High-Performance and Low-Cost robotic system in fast
and flexible way, it is becoming necessary to develop a
robotic development platform with hardware and
software IP in a hurry. Therefore, in order to
coordinate different hardware and software for robot
(especially for intelligent robot), an embedded
computing platform plays a very important role in the
development of robotic system.

Many researches [4]-[7] indicate that a layered
approach is gradually becoming a trend in the design
of robotic platform. The benefits of this design method
include high-level behavior control, task dispatching
and flexible design that can make the control structure
of robotic platform more clearly and the operation of
robot more efficiently. Consequently, we propose a
layered platform which is composed of application,
operating system, processor and device (from top layer
to bottom layer). On the basis of layered approach, we
build an embedded computing platform for robot.

Rest of this paper: Section 2 reviews related work
and Section 3 presents an overall embedded computing
platform for robots. Section 4 demonstrates an
experimental example based on the proposed platform.
Conclusions and future works are summarized in
Section 5.

2. Related work

2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing

978-0-7695-3158-8/08 $25.00 © 2008 IEEE
DOI 10.1109/SUTC.2008.69

445

There are many robotic development platforms [8],
[9] can aid the development of robotic system so far.
The followings intend to describe a variety of
platforms which are proposed in industry and
academia.

Microsoft Robotics Studio [8] is one of the business
software platforms; for instance, it is to supply a
software platform that can be used across a wide-
variety of hardware and it is also the first robot-
dedicated software announced by Microsoft. The
Development Environment of Microsoft Robotics
Studio includes the following major characteristic: 1.
End-to-End Development Platform. The platform
enables developers to interact with robots using
Windows or Web-based interfaces. 2. Lightweight
services-oriented runtime. The platform offers the
services which is message-based architecture and make
it simple to connect with robot's sensors and actuators
by using a Web-browser or Windows-based
application. 3. Scalable and extensible platform. The
programming model can be applied for a variety of
robot hardware platforms. Also, third parties can
extend the functionality of Microsoft Robotics Studio
by providing additional libraries and services.

iRobot create [9] is one of the business hardware
platforms and originated from the invention of MIT
Computer Science and Artificial Intelligence Lab; for
instance, it mainly offers a basic hardware
development platform which facilitates developers to
program simple operation of the robot without
considering the low-level hardware architecture.
Moreover, the additional command module which can
be mounted to the platform and is provided as well.
This optional module fulfils advanced developers to
construe the automatic application of robot and enables
users to stretch the application of robotic functionality
by means of adding or combining sensors, digital
cameras, computers or other electric device.

Besides, the academic community proposed many
layered platform architectures, too. In [4], a layered
behavior planning is established for optimizing robot’s
behavior that helps to modify the behavior model of
intelligent robot in accordance with environmental
characteristics. In [5]-[7], some group numerous
controllers into master/slave control mode and some
divide the system into three layers in roughly which
include application layer, OS layer and physical layer.
These methods are mainly aimed at robotic system and
can not only speed up the communication capability of
internal system, but also hold the property of
reconfiguration and elastic expansion.

Along with progress of times, the application fields
of robot are increasing extensively and the applications
are going to be designed not only for specific purpose
anymore. At the meanwhile, the robot's behavior will

also tend towards complexity to let the control flow of
the device more inextricable. Therefore, a development
platform which integrates hardware and software will
become an indispensable consideration in the future.
The platform must be highly scalable to make the
development of robot's hardware and software can
have the flexible design advantages which include cost,
performance and time-to-market.

3. Embedded computing platform for
robots

Fig. 1 is the architecture of embedded computing
platform which we propose. Refer to the layered
perspective of embedded computing platform in [4]-
[7], we describe our robotic embedded computing
platform with platform view, system view and robot
view respectively.

The platform can separate into four layers in
platform view which composed of application,
operating system, processor and device (from top layer
to bottom layer). The system view includes application
layer, management layer, computing layer and physical
layer separately.

The robot view divides the platform into three
layers because the robot's behavior mode and the
driving of device may be altered due to environment
situation. The layers comprise robot's intelligent and
behavior decision in the highest level, the motion
control in the lowest level and transition zone in the
middle which can configure the control flow of
hardware and software since environment situation
changes.

Fig. 1. Layered architecture of embedded computing

platform for robots

3.1. Application layer

On the embedded computing platform, the
developers can use C/C++, high-level languages, to
develop the applications for robot. Also, we now use
the off-the-shelf Keil development tools [10] to do the
programming task of compilation and simulation. In
addition, OS in next layer will provides Application-
programming interface (API) for developing
applications and drivers for propelling devices that can

446

help developers to create applications easily and
speedy without considering the hardware construction
in low-level and the driving methods.

In the utilization of embedded system, there is
usually a great amount of input/output (I/O) demand
for communicating with external component to carry
out the application's intention. Accordingly, the main
purpose of API and driver is to encapsulate I/O flow of
the system that helpfully let the developers can
concentrate on application's algorithm developing and
high-level management and decision program’s
designing without worrying about the I/O control flow.
Section 3.2 will discusses API and driver in more
detail.

3.2. OS

By the foundation of robot's attribute, a satisfied OS
for robotic purpose needs a well management
mechanism to deal with tasks and devices that can
coordinate various tasks inside the robot to work fine.
As well as offering real-time kernel to let the robot
react quickly and operate smoothly, the OS kernel
ought to have IPC methods which are dedicated to the
convenient of robot's applications developing.

Fig. 2 presents the structure of OS kernel. API
provides the interface between OS and top-level
applications. Driver provides the interface between OS
and low-level devices (e.g. actuator, sensor, etc.).

In this paper, we adopt uC/OS-II [11] as an
implementation example of robotic OS. uC/OS-II is a
RTOS which is open source and widely used especially
for control system, and it has the advantages of high
performance, small footprint, excellent real-time and
scalable.

In our design, inside OS layer which requires API,
system call, kernel and driver. To meet the requirement
of intelligent robot's behavior control, we rewrite API
and driver. API and driver mainly encapsulate the I/O
control flow as mentioned in section 3.1. We
implement the more top-level part of the I/O control
flow into API and the more low-level part of the I/O
control flow into driver since API is the top-level
interface, driver is the low-level interface and the
coverage of the I/O control flow includes top layer and
low layer.

Fig. 2. The software part of embedded computing platform

for robots

3.3. Processor

Base on the interactive requirement of intelligent
robot and outer physical environment, robot-dedicated
processor must possess a number of reconfigurable IPs
which can progress in a fast integrated development.
These IPs should be reusable and thereby depend on
different circumstance can be increased/decreased or
substituted. We then can base on the actual need to
arrange IPs and optimize the hardware design for the
embedded computing platform.

On our platform, we implement a reconfigurable
8051 processor core, MIAT51, which is modified from
the open source MC8051 IP-core of Oregano Systems
[12]. Because the robotic applications may often
communicate with the interface of external component
(e.g. I2C and UART) and the controllers for accessing
RAM or flash memory, we can do a flexible
adjustment for the special function register (SFR) of
the processor that lets the processor can easily map to
the peripheral interface of new added device. Thus the
control and utilization of the device can be more
convenient. Fig. 3 shows the architecture of our
processor and interface IPs for the platform.

Fig. 3. The hardware part of embedded computing platform

for robots

447

3.4. Device

As the design consideration of API and driver
which is mentioned in section 3.2. According to the
improvement of the robot's functionality and the
increasing of the system's complexity, the driving
method of the device becomes more difficult. At the
moment, using software to achieve the device's control
flow is comparatively more complex. Moreover, the
robot may work inefficiently because the waste of CPU
resources and Bus bandwidth. For example, the PWM
signal generation, which is needed for motors,
becomes the most serious problem. Consequently, we
make a parametric PWM generator which is also a
PWM hardware controller [13], [14] and can be
synthesized very fast. This PWM hardware controller,
which makes the robotic system can be controlled
effectively and eases the load of the top-level
application, receives the parameter from applications
and generates the high efficiency PWM signal
automatically.

Fig. 4 is a basic function block in the PWM
hardware IP. To describe the complex behavior mode
and control strategy precisely, we will use GRAFCET
[15] as a discrete-event behavior modeling tool. We
follow a set of automatic synthesis rules which is
proposed by Chen et al. [16] to synthesize a
customized PWM hardware IP which can be integrated
into an automatic system of robot easily.

Fig. 4. The basic function block of PWM controller

4. Experimental system implementation in
a hexapod robot

This experimental system, which is based on the
embedded platform that we propose, implements
subsumption system [17] on a hexapod robot.
Subsumption system, a behavior-based robot
programming method, is proposed by Rodney Brooks
in 1986. The suppressor node and the inhibiter node
inside the system can facilitate the layered and modular
behavior control design.

Fig. 5(a) is a hexapod robot used in this
experimental system which includes all kinds of

behavior module of subsumption system (refer to Fig.
5(b)).

Fig. 5. (a) is the hexapod robot (b) is the subsumption system

In our platform, the high-level intelligent decisive

behavior in subsumption system can be built on the
application layer of our platform. And we can complete
the robot's behavior design by using the mechanisms of
scheduler and inter-process communication (IPC)
which are the components in OS and can perform as
the utility of suppressor node and inhibiter node.
According to layer approach design, we may offload
most part of the robot’s complex and repeated software
control flow into hardware portion by using
GRAFCET for modeling and constructing the
hardware IPs which can ease the load of processor for
computing and enhance the whole system’s
performance.

To show the effectiveness of this designed platform,
the PWM hardware IP introduced in section 3.4 can be
used to explain the demonstration. We assume that the
robot involves an 8-stage procedure to complete a
movement, such as a step to go forward/backward,
left/right or turn in place etc. However, there are 6 legs
of the hexapod robot and each leg has 3 motors. In
other words, we need to generate 144 PWM signals to
control the robot’s single movement by either software
or hardware. Instead of using software control to
generate PWM signals for every movement every time,
we create a motion table on the top of the PWM
controller to store the 8-stage procedures’ parameter
value for each basic movement. Once receiving a
command instruction from the application, the PWM
controller then can determine the movement with the
instruction and acquire the relative parameter values
from the motion table to generate corresponding PWM
signals.

448

TABLE I
Impact of different implementation

PWM-signal
generation

Software
control

Hardware
control

Instruction(s) to
be sent through

bus

144

1

Wasting
processor
resource

much

less

Extra memory
space

requirement

no

yes

Even though the PWM controller must requires

extra memory space made on it for the motion table,
TableTABLE I shows that the resource requirement
impact of hardware control is less than software
control. And this result also indicates good prospects
and development advantages: First, without numerous
iterative software control flow, the saving processor
resource can devote to some other applications’
algorithm computing for increasing the efficacy of the
processor; Secondly, a substantial bandwidth saving on
the bus may apply to transfer the sensing data from
sensors to applications, especially the demanded
information which is urgent and critical to the system.

5. Conclusions and future works

In this paper, we propose an embedded computing
platform of intelligent robot which is layered
architecture. And the platform can be used to solve the
fast growing of complex designing problem of the
robotic system. This platform considers the
functionality requirements and resources constrain of
generic robotic system and the tasks of robot's control
in different abstraction layers. The platform, then, is
programmed and designed by the principle of
hierarchical and modular.

The applications of robotic system will tend to have
diverse functionality and higher complexity in the
future, hence, in the future work we will continue to
optimize the RTOS kernel according to the feature of
robot's motion and intend to design an optimum on-
chip RTOS kernel [18]-[21] which is used to
coordinate the operation of hardware and software.
Besides, we will also design specific robotic multi-
processor [22], [23] which is depend on the nature of
robotic system's functionality requirements and attempt
to make use of the architectonic property of multi-
processor to accelerate the overall robotic system's
operating performance.

References

[1] Brooks, R. A., “A Robust Layered Control System for a

Mobile Robot”, IEEE Journal of Robotics and
Automation, March 1986, Vol. 2, No. 1, pp. 14–23.

[2] Arkin, R. C., Behavior-Based Robotics, MIT Press,
Cambridge, MA, 1998.

[3] Joseph L. Jones, Anita M. Flynn, and Bruce A. Seiger,
Mobile Robots: Inspiration to Implementation, AK
Peters, Ltd, 1998.

[4] Rainer Bischoff, Volker Graefe, “Learning from Nature
to Build Intelligent Autonomous Robots”, Intelligent
Robots and Systems, 2006 IEEE/RSJ International
Conference on Oct. 2006, pp. 3160–3165.

[5] M. Omar Faruque Sarker, ChangHwan Kim, Seungheon
Baek, Bum-Jae You, “An IEEE-1394 Based Real-time
Robot Control System for Efficient Controlling of
Humanoids”, Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on Oct. 2006, pp.
1416–1421.

[6] J. Oh, D. Hanson, W. kim, I. Han, J. Kim, and I. Park,
“Design of Android type Humanoid Robot Albert
HUBO”, Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on Oct. 2006, pp.
1428–1433.

[7] Fumio Kanehiro, Yoichi Ishiwata, Hajime Saito,
Kazuhiko Akachi, Gou Miyamori, Takakatsu Isozumi,
Kenji Kaneko, Hirohisa Hirukawa, “Distributed Control
System of Humanoid Robots based on Real-time
Ethernet”, Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on Oct. 2006, pp.
2471–2477.

[8] http://msdn2.microsoft.com/zh-tw/robotics/default.aspx
[9] http://www.irobot.com/index.cfm

[10] http://www.keil.com/
[11] http://www.micrium.com/
[12] http://www.oregano.at/index2.htm
[13] Stefano Galvan, Debora Botturi, Paolo Fiorini, “FPGA-

based Controller for Haptic Devices”, Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference
on Oct. 2006, pp. 971–976.

[14] Narashiman Chakravarthy, Jizhong Xiao, “FPGA-based
Control System for Miniature Robots”, Intelligent
Robots and Systems, 2006 IEEE/RSJ International
Conference on Oct. 2006, pp. 3399–3404.

[15] R.David, “Grafcet :A powerful tool for specification of
logic controllers”, IEEE Trans. on Control Systems
Technology, 1995, Vol. 3, No. 3, pp. 253-268.

[16] CHEN, Ching-Han; DAI, Jia_Hong; “Design and high-
level synthesis of discrete-event controller”, National
Conference of Automatic Control and Mechtronics
System, 2002, vol.1, pp. 610–615.

[17] Brooks, R. A., “How To Build Complete Creatures
Rather Than Isolated Cognitive Simulators”,
Architectures for Intelligence, K. VanLehn (ed),
Erlbaum, Hillsdale, NJ, Fall 1989, pp. 225–239.

[18] H. Walder and M. Platzner, “Reconfigurable Hardware
Operating Systems: From Design Concepts to
Realizations”, Proceedings of the 3rd International
Conference on Engineering of Reconfigurable Systems

449

and Architectures (ERSA), CSREA Press, June 2003, pp.
284–287.

[19] C. Steiger, H. Walder, and M. Platzner, “Operating
Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-time Tasks”, IEEE
Transaction on Computers, November 2004, vol. 53, no.
11, pp. 1392–1407.

[20] M. Ullmann, M. Hubne, B. Grimm, and J. Becker, “On-
Demand FPGA Run-Time System for Dynamical
Reconfiguration with Adaptive Priorities”, Field
Programmable Logic and Application: 14th International
Conference, FPL, Springer-Verlag Heidelberg, August
2004, pp. 454–463.

[21] Theelen B.D.; Verschueren A.C.; Reyes Suarez V.V.;
Stevens M.P.J.; Nunez A., “A scalable single-chip
multi-processor architecture with on-chip RTOS kernel”,
Journal of Systems Architecture, December 2003, Vol.
49, No. 12 , pp. 619–639.

[22] Becker, J., “Configurable systems-on-chip: challenges
and perspectives for industry and universities”,
International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA), 2002,
pp.109–115.

[23] Sun, F., Ravi, S., Raghunathan, A., and Jha, N.K.,
“Custom-instruction synthesis for extensible-processor
platforms”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 23 (2), 2004,
pp. 216–228.

450

