
689

❘❙❚A P P E N D I X B

VHDL Language Reference

1. VHDL Basics

1.1. Valid Names

1.2. Comments

1.3. Entity and Architecture

1.4. Ports

1.5. Signals and Variables

1.6. Type

1.6.1. STD_LOGIC

1.6.2. Enumerated Type

1.7. Libraries and Packages

1.1 Valid Names
A valid name in VHDL consists of a letter followed by any number of letters or numbers,
without spaces. VHDL is not case sensitive. An underscore may be used within a name, but
may not begin or end the name. Two consecutive underscores are not permitted.

❘❙❚ EXAMPLES Valid names: decode4
just_in_time
What_4

Invalid names: 4decode (begins with a digit)
in__time (two consecutive underscores)
_What_4 (begins with underscore)
my design (space inside name)
your_words? (special character ? not allowed) ❘❙❚

1.2 Comments
A comment is explanatory text that is ignored by the VHDL compiler. It is indicated by
two consecutive hyphens.

❘❙❚ EXAMPLE —— This is a comment. ❘❙❚

690 A P P E N D I X B • VHDL Language Reference

1.3 Entity and Architecture
All VHDL files require an entity declaration and an architecture body. The entity declara-
tion indicates the input and output ports of the design. The architecture body details the in-
ternal relationship between inputs and outputs. The VHDL file name must be the same as
the entity name.

Syntax:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY __entity_name IS

GENERIC(define parameters);

PORT(define inputs and outputs);

END __entity_name;

ARCHITECTURE a OF __entity_name IS

SIGNAL and COMPONENT declarations;

BEGIN

statements;

END a;

❘❙❚ EXAMPLES: ——Majority vote circuit (majority.vhd)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY majority IS

PORT(

a, b, c: IN STD_LOGIC;

y : OUT STD_LOGIC);

END majority;

ARCHITECTURE a OF majority IS

BEGIN

y <= (a and b) or (b and c) or (a and c);

END a;

—— 2-line-to-4-line decoder with active-HIGH outputs (decoder.vhd)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY decoder IS

PORT(

d : IN STD_LOGIC_VECTOR (1 downto 0);

y : OUT STD_LOGIC_VECTOR (3 downto 0));

END decoder;

ARCHITECTURE a OF decoder IS

BEGIN

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

END a; ❘❙❚

A P P E N D I X B • VHDL Language Reference 691

1.4 Ports
A port in VHDL is a connection from a VHDL design entity to the outside world. The
direction or directions in which a port may operate is called its mode. A VHDL port
may have one of four modes: IN (input only), OUT (output only), INOUT (bidirec-
tional), and BUFFER (output, with feedback from the output back into the design en-
tity). The mode of a port is declared in the port statement of an entity declaration or
component declaration.

❘❙❚ EXAMPLES: ENTITY mux IS

PORT(

s1, s0 : IN STD_LOGIC;

y0, y1, y2, y3 : OUT STD_LOGIC);

END mux;

ENTITY srg8 IS

PORT(

clock, reset : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR (7 downto 0));

END srg8; ❘❙❚

1.5 Signals and Variables
A signal is like an internal wire connecting two or more points inside an architecture body.
It is declared before the BEGIN statement of an architecture body and is global to the ar-
chitecture. Its value is assigned with the �� operator.

A variable is an piece of working memory, local to a specific process. It is declared be-
fore the BEGIN statement of a process and is assigned using the :� operator.

❘❙❚ EXAMPLE: ARCHITECTURE a OF design4 IS

SIGNAL connect : STD_LOGIC_VECTOR (7 downto 0);

BEGIN

PROCESS check IS

VARIABLE count : INTEGER RANGE 0 TO 255;

BEGIN

IF (clock’EVENT and clock = ‘1’) THEN

count := count + 1; —— Variable assignment statement

END IF;

END PROCESS;

connect <= a and b; —— Signal assignment statement

END a; ❘❙❚

1.6 Type
The type of a port, signal, or variable determines the values it can have. For example, a sig-
nal of type BIT can only have values ‘0’ and ‘1’. A signal of type INTEGER can have any

692 A P P E N D I X B • VHDL Language Reference

1.6.1 STD_LOGIC

The STD_LOGIC (standard logic) type, also called IEEE Std.1164 Multi-Valued Logic,
gives a broader range of output values than just ‘0’ and ‘1’. Any port, signal, or variable of
type STD_LOGIC or STD_LOGIC_VECTOR can have any of the following values.

‘U’, —— Uninitialized

‘X’, —— Forcing Unknown

‘0’, —— Forcing 0

‘1’, —— Forcing 1

‘Z’, —— High Impedance

‘W’, —— Weak Unknown

‘L’, —— Weak 0

‘H’, —— Weak 1

‘-’, —— Don’t care

“Forcing” levels are deemed to be the equivalent of a gate output. “Weak” levels are
specified by a pull-up or pull-down resistor. The ‘Z’ state is used as the high-impedance
state of a tristate buffer.

The majority of applications can be handled by ‘X’, ‘0’, ‘1’, and ‘Z’ values.
To use STD_LOGIC in a VHDL file, you must include the following reference to the

VHDL library called ieee and the std_logic_1164 package before the entity declaration.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

1.6.2 Enumerated Type

An enumerated type is a user-defined type that lists all possible values for a port, signal, or
variable. One use of an enumerated type is to list the states of a state machine.

❘❙❚ EXAMPLE: TYPE STATE_TYPE IS (idle, start, pulse, read);

SIGNAL state: STATE_TYPE; ❘❙❚

1.7 Libraries and Packages
A library is a collection of previously compiled VHDL constructs that can be used in a de-
sign entity. A package is an uncompiled collection of VHDL constructs that can be used in
multiple design entities. Library names must be included at the beginning of a VHDL file,
before the entity declaration, to use certain types or functions. The most obvious is the li-
brary ieee, which in the package std_logic_1164, defines the STD_LOGIC (standard logic)

Type Values How written

BIT ‘0’, ‘1’ Single quotes
STD_LOGIC ‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, Single quotes
(see Section 1.6.1) ‘L’, ‘H’, ‘-‘
INTEGER Integer values No quotes
BIT_VECTOR Multiple instances of ‘0’ and ‘1’ Double quotes (e.g., “00101”)
STD_LOGIC_VECTOR Multiple instances of ‘U’, ‘X’, Double quotes (e.g., “11ZZ00”)

‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-‘

integer value, up to the limits of the bit size of the particular computer system for which the
VHDL compiler is designed. Some common types are:

A P P E N D I X B • VHDL Language Reference 693

type.

Syntax:

LIBRARY __ library_name;

USE __library_name.__package_name.ALL;

❘❙❚ EXAMPLES: LIBRARY ieee;

USE ieee.std_logic_1164.ALL; —— Defines STD_LOGIC type

USE ieee.std_logic_arith.ALL; —— Defines arithmetic functions

LIBRARY lpm; —— Component declarations for the

USE lpm.lpm_components.ALL; —— Library of Parameterized Modules

LIBRARY altera; —— Component declarations for

USE altera.maxplus2.ALL; —— MAX+PLUS II primitives
❘❙❚

2. Concurrent Structures

2.1. Concurrent Signal Assignment Statement

2.2. Selected Signal Assignment Statement

2.3. Conditional Signal Assignment Statements

2.4. Components

2.4.1. Component Declaration

2.4.2. Component Instantiation

2.4.3. Generic Clause

2.5. Generate Statement

2.6. Process Statement

A concurrent structure in VHDL acts as a separate component. A change applied to multi-
ple concurrent structures acts on all affected structures at the same time. This is similar to
a signal applied to multiple components in a circuit; a change in the signal will operate on
all the components simultaneously.

2.1 Concurrent Signal Assignment Statement
A concurrent signal assignment statement assigns a port or signal the value of a Boolean
expression or constant. This statement is useful for encoding a Boolean equation. Since the
operators and, or, not, and xor have equal precedence in VHDL, the order of precedence
must be made explicit by parentheses.

Syntax:

__signal <= __expression;

❘❙❚ EXAMPLES: sum <= (a xor b) xor c;

c_out <= ((a xor b) and c_in) or (a and b); ❘❙❚

2.2 Selected Signal Assignment Statement
A selected signal assignment statement assigns one of several alternative values to a port or

694 A P P E N D I X B • VHDL Language Reference

signal, based on the value of a selecting signal. It can be used to implement a truth table or
a selecting circuit like a multiplexer.

Syntax:

label: WITH __expression SELECT

__signal <= __expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value,

__expression WHEN __constant_value;

❘❙❚ EXAMPLES: —— decoder implemented as a truth table (2 inputs, 4 outputs)

—— d has been defined as STD_LOGIC_VECTOR (1 downto 0)

—— y has been defined as STD_LOGIC_VECTOR (3 downto 0)

WITH d SELECT

y <= “0001” WHEN “00”,

“0010” WHEN “01”,

“0100” WHEN “10”,

“1000” WHEN “11”,

“0000” WHEN others;

—— multiplexer

—— input signal assigned to y, depending on states of s1, s0

M: WITH s SELECT

y <= d0 WHEN “00”,

d1 WHEN “01”,

d2 WHEN “10”,

d3 WHEN “11”; ❘❙❚

2.3 Conditional Signal Assignment Statement
A conditional signal assignment statement assigns a value to a port or signal based on a se-
ries of linked conditions. The basic structure assigns a value if the first condition is true. If
not, another value is assigned if a second condition is true, and so on, until a default condi-
tion is reached. This is an ideal structure for a priority encoder.

Syntax:

__label:

__signal <= __expression WHEN __boolean_expression ELSE

__expression WHEN __boolean_expression ELSE

__expression;

❘❙❚ EXAMPLE: —— priority encoder

—— q defined as INTEGER RANGE 0 TO 7

—— d defined as STD_LOGIC_VECTOR (7 downto 0)

encoder:

q <= 7 WHEN d(7)=‘1’ ELSE

6 WHEN d(6)=‘1’ ELSE

5 WHEN d(5)=‘1’ ELSE

4 WHEN d(4)=‘1’ ELSE

3 WHEN d(3)=‘1’ ELSE

2 WHEN d(2)=‘1’ ELSE

1 WHEN d(1)=‘1’ ELSE

0;

A P P E N D I X B • VHDL Language Reference 695

❘❙❚

2.4 Components
A VHDL file can use another VHDL file as a component. The general form of a design en-
tity using components is:

ENTITY entity_name IS

PORT (input and output definitions);

END entity_name;

ARCHITECTURE arch_name OF entity_name IS

component declaration(s);

signal declaration(s);

BEGIN

Component instantiation(s);

Other statements;

END arch_name;

2.4.1 Component Declaration

A component declaration is similar in form to an entity declaration, in that it includes
the required ports and parameters of the component. The difference is that it refers to a
design described in a separate VHDL file. The ports and parameters in the component
declaration may be a subset of those in the component file, but they must have the same
names.

Syntax:

COMPONENT __component_name

GENERIC(__parameter_name : string := __default_value;

__parameter_name : integer := __default_value);

PORT(

__input name, __input_name : IN STD_LOGIC;

__bidir name, __bidir_name : INOUT STD_LOGIC;

__output name, __output_name : OUT STD_LOGIC);

END COMPONENT;

❘❙❚ EXAMPLE: ARCHITECTURE adder OF add4pa IS

COMPONENT full_add

PORT(

a, b, c_in : IN BIT;

c_out, sum : OUT BIT);

END COMPONENT;

SIGNAL c : BIT_VECTOR (3 downto 1);

BEGIN

statements

END adder; ❘❙❚

2.4.2 Component Instantiation

Each instance of a component requires a component instantiation statement. Ports can be

696 A P P E N D I X B • VHDL Language Reference

assigned explicitly with the �� operator, or implicitly by inserting the user port name in
the position of the corresponding port name within the component declaration.

Syntax:

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value ,

__parameter_name => __parameter_value)

PORT MAP (__component_port => __connect_port,

__component_port => __connect_port);

❘❙❚ EXAMPLES: —— Four Component Instantiation Statements

—— Explicit port assignments

adder1: full_add

PORT MAP (a => a(1),

b => b(1),

c_in => c0,

c_out => c(1),

sum => sum(1));

adder2: full_add

PORT MAP (a => a(2),

b => b(2),

c_in => c(1),

c_out => c(2),

sum => sum(2));

adder3: full_add

PORT MAP (a => a(3),

b => b(3),

c_in => c(2),

c_out => c(3),

sum => sum(3));

adder4: full_add

PORT MAP (a => a(4),

b => b(4),

c_in => c(3),

c_out => c4,

sum => sum (4));

—— Four component instantiations

—— Implicit port assignments

adder1: full_add PORT MAP (a(1), b(1), c0, c(1), sum(1));

adder2: full_add PORT MAP (a(2), b(2), c(1), c(2), sum(2));

adder3: full_add PORT MAP (a(3), b(3), c(2), c(3), sum(3));

adder4: full_add PORT MAP (a(4), b(4), c(3), c4, sum(4)); ❘❙❚

2.4.3 Generic Clause

A generic clause allows a component to be designed with one or more unspecified proper-
ties (“parameters”) that are specified when the component is instantiated. A parameter
specified in a generic clause must be given a default value with the :� operator.

Syntax:

—— parameters defined in entity declaration of component file

ENTITY entity_name IS

GENERIC(__parameter_name : type := __default_value;

A P P E N D I X B • VHDL Language Reference 697

__parameter_name : type := __default_value);

PORT (port declarations);

END entity name;

—— Component declaration in top-level file also has generic clause.

—— Default values of parameters not specified.

COMPONENT component_name IS

GENERIC(__parameter_name : type;

__parameter_name : type);

PORT (port declarations);

END COMPONENT;

—— Parameters specified in generic map in component instantiation

__instance_name: __component_name

GENERIC MAP (__parameter_name => __parameter_value,

__parameter_name => __parameter_value)

PORT MAP (port instantiations);

❘❙❚ EXAMPLE: —— Component: behaviorally defined shift register

—— with default width of 4.

ENTITY srt_bhv IS

GENERIC (width : POSITIVE := 4);

PORT(

serial_in, clk : IN STD_LOGIC;

q : BUFFER STD_LOGIC_VECTOR(width-1 downto 0));

END srt_bhv;

ARCHITECTURE right_shift of srt_bhv IS

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT and clk = ‘1’) THEN

q(width-1 downto 0) <= serial in & q(width-1 downto 1);

END IF;

END PROCESS;

END right_shift;

—— srt8_bhv.vhd

—— 8-bit shift register that instantiates srt_bhv

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

ENTITY srt8_bhv IS

PORT(

data_in, clock : IN STD_LOGIC;

qo : BUFFER STD_LOGIC_VECTOR(7 downto 0));

END srt8_bhv;

ARCHITECTURE right shift of srt8_bhv IS

—— component declaration

COMPONENT srt_bhv

GENERIC (width : POSITIVE);

PORT(

serial_in, clk : IN STD_LOGIC;

q : OUT STD_LOGIC_VECTOR(7 downto 0));

698 A P P E N D I X B • VHDL Language Reference

END COMPONENT;

(example continues)

BEGIN

—— component instantiation

Shift_right_8: srt_bhv

GENERIC MAP (width=> 8)

PORT MAP (serial_in => data_in,

clk => clock,

q => qo);

END right_shift; ❘❙❚

2.5 Generate Statement
A generate statement is used to create multiple instances of a particular hardware structure. It
relies on the value of one or more index variables to create the required number of repetitions.

Syntax:

__generate_label:

FOR __index_variable IN __range GENERATE

__statement;

__statement;

END GENERATE;

❘❙❚ EXAMPLES: —— Instantiate four full adders

adders:

FOR i IN 1 to 4 GENERATE

adder: full_add PORT MAP (a(i), b(i), c(i-1), c(i), sum(i));

END GENERATE;

—— Instantiate four latches from MAX+PLUS II primitives

—— Requires the statements LIBRARY altera; and

—— USE altera.maxplus.ALL;

latch4:

FOR i IN 3 downto 0 GENERATE

latch_primitive: latch

PORT MAP (d => d_in(i), ena => enable, q => q_out (i));

END GENERATE; ❘❙❚

2.6 Process Statement
A process is a concurrent statement, but the statements inside the process are sequential.
For example, a process can define a flip-flop, a separate component whose ports are af-
fected concurrently, but the inside of the flip-flop acts sequentially. A process executes all
statements inside it when there is a change of a signal in its sensitivity list. The process la-
bel is optional.

Syntax:

__process_label:

PROCESS (sensitivity list)

variable declarations

BEGIN

sequential statements

A P P E N D I X B • VHDL Language Reference 699

END PROCESS __process_label;

❘❙❚ EXAMPLE: —— D latch

PROCESS (en)

BEGIN

IF (en = ‘1’) THEN

q <= d;

END IF;

END PROCESS; ❘❙❚

3. Sequential Structures

3.1. If Statement

3.1.1. Evaluating Clock Functions

3.2. Case Statement

A sequential structure in VHDL is one in which the order of statements affects the opera-
tion of the circuit. It can be used to implement combinational circuits, but is primarily used
to implement sequential circuits such as latches, counters, shift registers, and state ma-
chines. Sequential statements must be contained within a process.

3.1 If Statement
An IF statement executes one or more statements if a Boolean condition is satisfied.

Syntax:

IF __expression THEN

__statement;

__statement;

ELSIF __expression THEN

__statement;

__statement;

ELSE

__statement;

__statement;

END IF;

❘❙❚ EXAMPLE: PROCESS (reset, load, clock)

VARIABLE count INTEGER RANGE 0 TO 255;

BEGIN

IF (reset = ‘0’) THEN

q <= 0;

ELSIF (reset = ‘1’ and load = ‘0’) THEN

q <= p;

ELSIF (clock’EVENT and clock = ‘1’) THEN

count := count + 1;

q <= count;

END IF;

700 A P P E N D I X B • VHDL Language Reference

END PROCESS; ❘❙❚

3.1.1 Evaluating Clock Functions

As implied in previous examples, the state of a system clock can be checked with an IF
statement using the predefined attribute called EVENT. The clause clock’EVENT (“clock
tick EVENT”) is true if there has been activity on the signal called clock. Thus
(clock’EVENT and clock � ‘1’) is true just after a positive edge on clock.

3.2 Case Statement
A case statement is used to execute one of several sets of statements, based on the evalua-
tion of a signal.

Syntax:

CASE __expression IS

WHEN __constant_value =>

__statement;

__statement;

WHEN __constant_value =>

__statement;

__statement;

WHEN OTHERS =>

__statement;

__statement;

END CASE;

❘❙❚ EXAMPLES: —— Case evaluates 2-bit value of s and assigns

—— 4-bit values of x and y accordingly

—— Default case (others) required if using STD_LOGIC

CASE s IS

WHEN “00” =>

y <= “0001”;

x <= “1110”;

WHEN “01” =>

y <= “0010”;

x <= “1101”;

WHEN “10” =>

y <= “0100”;

x <= “1011”;

WHEN “11” =>

y <= “1000”;

x <= “0111”;

WHEN others =>

y <= “0000”;

A P P E N D I X B • VHDL Language Reference 701

x <= “1111”;

END CASE;

—— This case evaluates the state variable “sequence”

—— that can have two possible values: “start” and “continue”

—— Values of out1 and out2 are also assigned for each case.

CASE sequence IS

WHEN start =>

IF in1 = ‘1’ THEN

sequence <= start;

out1 <= ‘0’;

out2 <= ‘0’;

ELSE

sequence <= continue;

out1 <= ‘1’;

out2 <= ‘0’;

END IF;

WHEN continue =>

sequence <= start;

out1 <= ‘0’;

out2 <= ‘1’;

END CASE; ❘❙❚

