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Abstract

The Heteroassociative Morphological Memories are a
recently proposed neural network architecture based

on the shift of the basic algebraic framework. They

possess some robustness to specific noise models (ero-
sive and dilative noise). Here we report on going work
on their applicatiob to the tasks of face localization
in grayscale images and visual self-localization of.a
mobile robot.

1 Introduction:

Morphological Associative Memories is a novel kind
of neural network architectures recently proposed in
[2], {1]. In these networks, the operations of multi-
plication and addition are replaced by addition and
maximum (or minimum), respectively. In [2] and [1]
the construction of the Heteroassociative and Autoas-
sociative Morphological Memories (HMM and AMM)
is done following the isomorphy with the construc-
tion of the Heteroassociative and Autoassocitive Hop-
field Memories exchanging the matrix product for the
min/max matrix product. The use of the minimum or
maximum operator determines the erosive or dilative
character of the morphological memory. The memory
capacity of the AMM is not bounded by conditions of
orthogonality of the input patterns. The memory ca-
pacity of the HMM, however, is conditioned to some
kind of max/min orthogonality relations between the
patterns. The sensitivity of both AMM and HMM
to erosive and dilatative noise has been character-

ized. The construction of a robust HMM (insensitive
to both erosive and dilative noise) is decomposed in
the construction of an AMM on the input pattern
kernels and an HMM that maps the input pattern
kernels into the output patterns. The inconvenient
of this approach, besides the difficulties in the defini-
tion of the pattern kernels, lies in the extremely high
storage and computational demands imposed by the
construction of an AMM of any practical utility. For
this reason, in this paper the approach taken is that
of defining an HMM based on eroded/dilated versions
of the input at several scales in a Scale-Space frame-
work [10].

Face detection can be defined as the problem of de-
ciding the presence of a face in the image. Multiple
face detection is the generalization to the presence of
a set of several faces in the image. Multiple face de-
tection is usually dealt with by solving many single
face detection problems posed over a set of overlap-
ping subimages extracted from the image by a sliding
window. Face localization is the problem of giving
the coordinates in the image of the detected faces.
Face localization is answered giving the coordinates
of the positive responses to the single face detection’
instances in the multiple face detection. From a sta-
tistical pattern recognition perspective, face detec-
tion can be considered as a two-class classification
problem: given an image, it must be decided if it be-
longs either to the face class or to the non-face class.
The main difficulty then is the appropriate character-
ization of the non-face class. Some works, based on
neural networks, [3], [4] [6] do it through a bootstrap-
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ping training strategy. Others, like the ones based
on linear subspace transformation like the Principal
Component Analysis (PCA) [5] compute the likeli-
hood of the face class on the basis of the distance
to the face subspace characterized by the eigenfaces..
Geometrical approaches try to fit an ellipse to the face
contour [7] or to detect some face elements and verify
their relative distances. Detection of face elements is
difficult and a research subject by itself. Finally, ap-
proaches based on color processing [8] are very easy
to realize, although prone to give high false positives
rates. A sensible approach to more robust face lo-
calization is the combination of several methods into
a multi-cue system. Recent works in this line, inte-
grating geometrical and color-based approaches, are
reported in [9]. In this spirit we propose our work as
another verification tool.

Self-Localization is the ability to determine the
spatial position and orientation of the robot using
the information provided by its sensors[l1, 12, 13,
14, 15, 16]. Visual self-localization based on the im-
ages provided by on-board cameras is usually based
on the detection of some predetermined landmarks
[11, 13, 15] specifically designed to be easily recog-
nized in real time. Landmarks either provide a com-
plementary information to the internal state estima-
tion or are taken as a direct source for position esti-
mation (i.e.: via triangulation or via Bayesian classi-
fication). The stated goal is to recognize, with some
degree of robustness, several scenes that character-
ize predetermined robot placements and orientations.
Robustness must cope with some variations in light-
ing and small rotations and translations of the images
due to the uncertainty of the robot position, which,
in its turn, is due to the uncertainties in the mo-
tion of the robot. The set of views is coded using a
binary valued vector, under a straightforward orthog-
onal binary codification. Thus the Heteroassociative
network takes as input an image of an indoor scene
and gives as output a binary vector that encodes the
view.

The paper is structured as follows. In section 2 we
review the formal definition of HMM together with
their properties. In section 3 and 4 we present results
on face localization and self-llocalization. And finally,
in section 5, we present our conclusions and future

goals.

2 Heteroassociative Morpho-
logical Neural Network

The work on Morphological Neural Networks stems
from the consideration of an algebraic lattice struc-
ture (R,V,A,+) as the alternative to the usual
(R, +, -) framework for the definition of Neural Net-
works computation [2], [1]. The operators V and A
denote, respectively, the discrete min and min op-
erators (resp. sup and inf in a continuous setting).
The approach is termed morphological neural net-
works because V and A are the basic operators for
the morphological erosion and dilation.

Following the analogy, given (X,Y) =
{(x%,¥%);€=1,..,k}, a set of pairs of input/output
patterns the heteroassociative neural network built
up as W = 3. y¢ - (x¢ )’ becomes in the setting of
morphological neural networks:

Wxy = /k\ [y5 X (—xe)l] (1)
e=1

Mxy = \k/ [y5 X (_xg)l] (2)
£=1

where x is any of ¥ or A. It follows that the weight
matrices are lower and upper bounds of the max/min
products V& Wxy < y€ x (—xf)' < Mxy and there-
fore the following bounds on the output patterns hold
V& Wxy YxE < y& < Myy Ax¢, that can be rewritten
Wxy YX <Y < Mxy A X.

A matrix A is a ¥Y-perfect (A-perfect) memory for
(X, Y)fAYX =Y (AAX =Y). It can be proven
that if A and B are Y-perfect and ¥Y-perfect memories
for (X,Y) then

A< Wxy < Mxy <Band Wxy¥X =Y = MxyAX.
®3)

Conditions for perfect recall on the memories are
given by a theorem that states that Wy is Y-perfect

if and only if V¢ the matrix [y5 X (—xﬁ)'] - Wxy
contains a zero at each row. Similarly Myy is A-
perfect if and only if V¢ the matrix [yf x (—x¢ )I] -
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Mxy contains a zero at each row. These conditions
are rewritten for Wxy and Mxy respectively as fol-
lows:

[
<=

VVidj; z) (zj - yf) +y] ()
£=1

. k

vWidjia] = A (f-) 48 @)

m
Il
-

Finally, let it be X7 a noisy version of x7. If X7 < x”
then X7 is an eroded version of X7, or X" is subjected
to erosive noise. If X > x” then X" is a dilated
version of X7, or X7 is subjected to dilatative noise.
Morphological memories are very sensitive to these
kinds of noise. The conditions for the perfect recall
of X7 given a noisy copy X for Wxy , that is, the

conditions under which Wxy ¥X? = y7 are as follows:.

Vi E] < a:;?v/\ \/(y;’—yf+x§) (6)

i \&#Y
Vidji Tl = =V V (y7 -y +:z:§)
(3o

Similarly for the perfect recall of x” given a noisy
copy X” for Mxy, that is, the conditions under which
Mxy AXY = y" are as follows:

vid) < AV A (@ - +25) | @
i \§#y
Vidji; Tl = a:]”.i/\ /\(y?—yf+x§‘,)
30l

These conditions (7), (6) are the basis for our ap-
proach. The conditions in (6) and (7) state that
the matrix Wxy is robust against controlled erosions
of the input patterns while the matrix Mxy is ro-
bust against controlled dilations of the input pat-
terns. Therefore if we store in the W matrix a set
of eroded patterns, the input could considered as a
dilation of the stored pattern most of the times. The
dual assertion holds for the M matrix. It also holds

that when the output of both M and W memories are
the same, then the output of both corresponds to the
desired output. This holds in the case of interactions
between the stored patterns. We will consider these
matrices as approximations to the ideal memory of
all the distorted versions of the input data, so that
their output is an approximation to the response of
this ideal memory. We applye a scale space approach
to increase the robustness of the process.

Given a set of input patterns X and a set of
output class enconding Y. We built a set of HMM
{M%y, Wgyi0 =1,2,..8} where each M%, is con-
structed from outputd and the input patterns eroded
with an spherical structural object of scale o, and
each W%y is constructed from the outputs and in-
put patterns dilated with an spherical structural ob-
ject of scale 0. Given a test input pattern x, the
memories at the different scales are applied giving
yM =Usey (M%y Ax)andy" =, (Wgy ¥X).
The final output is the intersection of these multiscale

responses:
y=y"[y". (®)

In the case of face localization, the output is the clas-
sification of the image block as a face, which is given
as a block of white pixels whenever the input image
block is identified with any of the stored face pat-
terns. In the mobile self-localization the M memories
are build from eroded versions of the scene, and the
test images are dilated before being applied to the
memory for recognition.

3 Experiments on face local-
ization '

As stated in the introduction, the target application
is face localization. For this purpose a set face pat-
terns is selected as the representatives of the face
class. In the experiments reported here the set of face
patterns is the one presented in figure 1. This small
set shows several interesting features: faces are of dif-
ferent sizes, background has been manually removed,
there is no precise registration of face features (some
of the faces are rotated), and there is no intensitity
normalization (equalization or any other illumination
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compensation). Therefore, building this set of pat-
terns corresponds to an almost casual browsing and
picking of face images in the database.

Face localization is a two class classification prob-
lem, however, we formulate it as a response to a n-
class classification problem. As described in the pre-
vious section, the M and W HMM s are built up to
classify each image block as one of the face patterns.
If it fails, the response is arbitrary and we consider
the image block as a non-face block. The HMM s
output are orthogonal binary vectors encoding the
face pattern. Both memories are convolved with the
image to search for faces. At each pixel the positive
classification with one of the M? memories produces
a square of face pixels of a size that is the half of the
image block, and centered at this pixel position. The
recognition at the different scales is added into an M-
recognition binary image. The same process applies
to the W° memories. The intersection of the face
pixels recognized with each HMM is the final result,
which is superimposed to the original image.

We have performed initial studies over a small
database of 20 images with a varying range of scales.
The average ROC curve over all the images relating
the true and false positives obtained with scale ranges
varying from s = 1 up to s = 13 is shown in figure
2. It can be appreciated that the approach obtains
a high recognition rate (over 85%) with very small
false recognition rates (less than 5%). As the scale
range increases we reach the 100% of face recognition
at the pixel level. Face pixels were labelled manually
in a process which is independent of the selection of
the face patterns. These results are very promising
and we are planning the application of this approach
to larger face databases, like the well-known CMU
database. As a final result, we give in figure 3 some
images with recognition results at scale 5.

4 Experiments self-

localization

on

As stated in the introduction, one of the target ap-
plications is Self-Localization for a mobile robot.
For this purpose, we have tested the robustness of

the HMM to small translations and rotations of the
stored views. The results of this experiment are pub-
lished elsewhere. Here we will report preliminary re-
sults on the next step leading to the use of HMM for
self-localization. From a mobile robot B-21 (iRobot
Corp.), we have taken with the on-board camera a
sequence of pictures of a round trip of a laboratory.
The following process has been performed in order to
select the most representative shots: (1) Each image
has been used to build an M memory whose desired
output is a single 1. To add robustness the image
was eroded with at structural objet of scale prede-
fined. (2) Each M memory constructed was tested
against the entire secuence. The recognition corre-
sponds to the output of an 1 by the HMM. For robust-
ness each test image was dilated before application of
the HMM. (3) The representative shots were selected
as those with greater no intersecting supports in the
sequence. The support of an image are the images in
the sequence that output an 1 when applied as the
input to its M memory.

Figure 4 shows the supports for the images in the
sequence. Rows correspond to the image used to
build the HMM. Columns correspond to the images
as test of the HMM. Obviously the diagonal must
be white. The images were eroded with structural
elements of scale 6 and dilated with structural el-
ements of scale 4.The figure 5 shows the results of
trying to recognize the images in the sequence with
the shots identified in the previous step. The recogni-
tion shows high spatial coherence. That means that
within small spatial displacements the same scene is
recognized and a physical position and orientation
can be attached to the recognized image. It must
taken into account that the images are taken in in-
door conditions with artificial light, the proposed ap-
proach could be of interest in these conditions.

5 Conclusions and further

work
We propose the application of HMM for two tasks:

(1) a realization of face localization that can be com-
petitive with other graylevel based procedures, and
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Figure 1: Face patterns used in the experiments
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Figure 2: Mean ROC of the face localization across
the set of images

Figure 3: Some results of face localization using pat-
terns eroded/dilated to scales up to 5

Figure 4: The supports of the images in the sequence.
Erosion of scale 6 and dilation of scale 4.

(2) the self-localization of mobile robots based on
visual information. The. HMM give a relatively
fast response because they only perform integer and
max/min operations and its response does not imply
the computation of an energy minimum. The main
drawback of the HMM in general is their sensitiv-
ity to morphological noise: erosions and dilations of
the image. We have applied multiscale morphologi-
cal ideas to overcome this sensitivity, inspired in in-
spired in the construction of the kernels in [2] and [1].
For the face localization task dual HMM were con-
structed and applied simultaneously to the images.
For the self-localization task, the robust recognition
was achieved applying morphological erosion to the
images before constructing the M HMM and dilat-
ing the images before applying them for recognition.
Further work on these appliations over extended data
sets are on the way. :

Acknowledgements The work has been devel-
opped under grants UE-1999-1 and PI-98-21 of
the Gobierno Vasco (GV/EJ), Ministerio de Cien-
cia y Tecnologifa under grant TIC2000-0739-C04-
02. B.Raducanu has the benefit of a predoctoral
grant from the University of The Basque Country
(UPV/EHU)

References

[1] G. X. Ritter, P. Sussner and J. L. Diaz-de-Leon,
”Morphological Associative Memories”, IEEE

2522



Figure 5: Recognition results along the sequence.
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