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Abstract

The theory of artificial neural networks has been suc-
cessfully applied to a wide variety of pattern recognition
problems. In this theory, the first step in computing the next
state of a neuron or in performing the next layer neural net-
work computation involves the linear operation of multi-
plying neural values by their synaptic strengths and adding
the results. Thresholding usually follows the linear opera-
tion in order to provide for nonlinearity of the network. In
this paper we introduce a novel class of neural networks,
called morphological neural networks, in which the oper-
ations of multiplication and addition are replaced by addi-
tion and maximum (or minimum), respectively. By taking
the maximum (or minimum) of sums instead of the sum of
products, morphological network computation is nonlin-
ear before thresholding. As a consequence, the properties
of morphological neural networks are drastically different
than those of traditional neural network models. In this
paper we consider some of these differences and examine
the computing capabilities of morphological neural net-
works. As particular examples of a morphological neural
network we discuss morphological associative memories
and morphological perceptrons.

1. Introduction

The concept of morphological neural networks grew
out of the theory of image algebra [22, 17, 16, 23]. It
was shown that a subalgebra of image algebra includes
the mathematical formulations of currently popular neural
network models [20, 16] and first attempts in formulat-
ing useful morphological neural networks appeared in [18,
10]. Since then, only a few papers involving morpholog-
ical neural networks have appeared. J. L. Davidson em-
ployed morphological neural networks in order to solve
template identification and target classification problems
[9, 12, 11, 8]. C.P. Suarez-Araujo applied morphologi-
cal neural networks to compute homothetic auditory and
visual invariances [27, 26]. Both of these researchers de-
vised multilayer morphological neural networks for very
specialized applications. In this paper we attempt a more
general approach to morphological neural networks which,

1015-4651/96 $5.00 © 1996 IEEE
Proceedings of ICPR 96

hopefully, will lay the foundations for future research ef-
forts concerned with the behavior, capabilities, and appli-
cations of these novel networks.

We need to remark that an entirely different model
of a morphological network was presented in [28]. This
particular model uses the usual operations of multiplica-
tion and summation at each node, which is fundamentally
different from the models presented here. The model pre-
sented here is connected with the fundamental question
concerning the difference between biological neural net-
works and artificial neural networks: Is the strength of
the electric potential of a signal traveling along an axon
the result of a multiplicative process and does the mech-
anism of the postsynaptic membrane of a neuron add the
various potentials of electrical impulses, or is the strength
of the electric potential an additive process and does the
postsynaptic membrane only accept signals of a certain
maximum strength? A positive answer to the latter query
would provide a strong biological basis for morphological
neural networks.

2. Computational Basis for
Morphological Neural Networks

In recent years lattice based matrix operations have
found widespread applications in the engineering sciences.
In these applications, the usual matrix operations of ad-
dition and multiplication are replaced by corresponding
lattice operations. Lattice induced matrix operations lead
to an entirely different perspective of a class of nonlin-
ear transformations. These ideas were applied by Shim-
bel [25] to communications networks, and to machine
scheduling by Cuninghame-Green {4, 5] and Giffler [13].
Others have discussed their usefulness in applications to
shortest path problems in graphs [15, 2, 3, 1]. Additional
examples are given in [6], primarily in the field of op-
erations research. Application to image processing were
first developed by Ritter and Davidson {19, 7]. This paper
presents a continuation of these developments in that we

- take lattice based operations as the basic computational
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model for artificial neural networks.



Artificial neural network models are specified by the
network topology, node characteristics, and training or
learning rules. The underlying algebraic system used in
these models is the set of real numbers R together with
the operations of addition and multiplication and the laws
governing these operations. This algebraic system, known
as a ring, is commonly denoted by (R,+, x). The two
basic equations governing the theory of computation in
the standard neural network model are:

n

nt+1) = a;(t) - wy o
=
and
ai(t+1) = f(n(t + 1) - 6:), 2

where a;(t) denotes the value of the jth neuron at time ¢,
n represents the number of neurons in the network, w;;
the synaptic connectivity value between the ith neuron and
the jth neuron, 7;(¢ + 1) the next total input effect on the
ith neuron, 8; a threshold, and f the next state function
which usually introduces a nonlinearity into the network.
Although not all current network models can be precisely
described by these two equations, they nevertheless can
be viewed as variations of these.

Note that the computations represented by Equation
1 are based on the operations of the algebraic structure
(R,+, x). The basic computations occurring in the pro-
posed morphological network are based on the semi-ring
structures (R_ oo, V, +) and (R, A, +'), where R_o and
R, represent the extended real number systems R_., =
RU{~oco} and Ro, = RU{co}. The basic arithmetic and
logic operations in the extended real number systems are
as follows. The symbol + denotes the usual addition with
the additional stipulation that a + (—c0) = (—o0) +a =
—oo Va € R_w. The symbol +' denotes the self dual
of addition and is defined by a +’ b = a -+ b whenever
a,b€R, and a+' 00 = 00+ a = o Ya € Ry,. The sym-
bols V and A denote the binary operations of maximum
and minimum, respectively, with the additional stipula-
tion that a V (—o0) = (—0)Va = a Va € R_, and
aAoo =ocoAa =a Va € R,. Note that the symbol
—o0 acts like a zero element in the system (R_..,V,+)
if one views V as addition and + as multiplication. Sim-
ilar comments hold for the symbol co in the system
(Reo, A, +/). Also, the role of the multiplicative identity
in the structure (R, +, x) is played by the number 1; ie.,
l-a=a-1=a VYa € R. In the structures (R_,V,+)
and (R, A, 1), this role is played by the number 0 since
O+a=a+0=a VaeR

Using the structure (R_., V, +), the two basic equa-
tions underlying the theory of computation in the morpho-
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logical neural network model are given by:

n

rt+1) = \/ a;(t) +wi; 3)
j=1
and
a;(t+1) = f(r(t+1)—6;). “)

Observe that Equations 2 and 4 are identical. Thus, the
difference between the classical models and the morpho-
logical model is the computation of the next total input
effect on the ith neuron, which is given by

n

V aj() + wyj

j=1
= (a1(t) + wi1) V (a2(®) +wi2) V -+- V (an(t) + wm()s)

Using the dual structure (Rm,‘/\, +') instead, then Equa-
tion 3 needs to be replaced by
n

n(t+1) = N ai(t) + wij.

j=1

©)

Equations 2 and 4 represent the basic operations of a
dilation and an erosion that form the foundation of math-
ematical morphology [24]. Hence the reason for calling
the proposed neural network model a morphological neu-
ral network.

Let v/ denote the transpose of the vector v. The total
network computation resulting from Equation 1 can be
expressed in matrix form as

Tt +1) =W -a(t), )

where W denotes the n X n synaptic weight matrix
whose i,jth entry is wi; and a(t) = (ai(t), ..., an(t))',
TE+1) = (RE+1), ..., mE+1).

Analogous to Equation 7, the total morphological net-
work computation resulting from Equation 3 (or Equation
6) can also be expressed in matrix form. In order to do
this, we need to define a matrix product in terms of the
operations of the semi-ring (R_,V,+). Foranm X p
matrix A and a p X n matrix B with entries from R_, the
matrix product C = AM B , also called the max product
of A and B, is defined by

P
cij = \/ air + bxj
k=1
= (an =+ bkl) \Y (a,'g + sz) V...V (a,-p + bpj) .
The min product of A and B induced by (Ro, A, +)
is defined in a similar fashion. Specifically, the i jth entry
of C = AW B is given by

(®)

cij = [\ aix + bij
k=1
= (a,-l +f bkl) A (aiz -+ sz) AL A (aip 4! bpj) .

®



The total network computation resulting from Equations
3 and 6 can now be expressed in the matrix forms
T(t+1)=WMa(t) (10)

and

T(t+1) = WHEa(t), an

respectively.

Some additional comments concerning lfattice based
operations are pertinent when discussing morpholog-
ical network computations. When using the lattice
(R-oo, V, +), the maximum of two matrices replaces
the usual matrix addition of linear algebra. Here the i jth
entry of the matrix C = AV B is given by c;; = a;; Vb;;.
Similarly, the minimum of two matrices C = A A B,
which is used when employing the structure (R, A, +),
is defined by ¢;; = a;; A b;;.

The structures (R_o,V,+) and (Reo,A,+)
can be combined into one cohesive algebraic system
(Rico,V,A,+,+’), called a bounded I-group. Here
Rico =R U {+00,00} and the operations of maximum
and minimum extend intuitively to the appended symbols
of infinity, namely

ooVr=rVoo=0 VreRiy (12)
owAr=rAco=r VreRiyp

The dual additive operations + and +’ are identical when
adding real numbers; i.e.,

a+'b=a+b Va,beR. (13)
However, they introduce an asymmetry between —oo and

+o00 when properly extended to the set Rio,. Specifically,
we define

a+ (—o0) = (—0) +a = -0 a€R_
a+oo=00+a=0cc a€Rx
a+' (—o00) =(~0)+ a=—0 a€R_»
a+oo=c0+ a= a € Ry
(—00) + 00 = 00 + (—00) = —00
(—00) +' 00 = 00 +' (~00) = oo

(14)

The algebraic structure of R+, provides for an el-
egant duality between matrix operations. If r € Ry,
then the additive conjugate of r is the unique element r*
defined by

—-r ifreR
= {-—oo if r = +00. (15)
400 ifr=-o00
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Here, —r is the inverse of » under the group operation +.
Therefore, (r*)* = ». This gives the following relation
for all »,u in Rieo:
rAu=(r"Vu*). (16)
If A = (aij),, %, 1S an m X n matrix with a;; € Rioo,

then the conjugate matrix A* of A is the n X m matrix
A* = (bij),, . defined by bi; = [a;;]", where [a;i]" is the

nxm
additive conjugate of a;; as defined above. It follows that
AANB = (A*VB*) (17)
and
AR B=(B"mA")" (18)

for appropriately sized matrices. This implies that a mor-
phological neural net using the operation (ie., Equa-
tion 10) can always be reformulated in terms of the oper-
ation A (i.e., Equation 11), and vice versa, by using the
duality relations expressed in Equations 17 and 18.

Having defined the necessary mathematical tools, we
are now in a position to discuss some basic properties of
morphological neural networks and present some exam-
ples.

3. Computing Capabilities of
Morphological Neural Networks

In this section we show that a morphological neu-
ral network is formally capable of solving any conven-
tional computational problem. Conventional computa-
tional problems are a class of problems whose inputs and
outputs can be represented as binary strings. Given a prob-
lem whose input and output can be represented as binary
strings X = Z1Z2 -+ &, and ¥y = Y1y, - - - Y, respec-
tively, then the problem can be characterized in terms of
k Boolean functions

Y1 =.f1(x): y2=f2(x)a"' 7yk:fk(x)~ (19)
A well-known fact of switching theory is that two-input
NAND gates form a complete basis for Boolean functions
[14]. Recall that a two-input NAND gate is one whose
output is O if and only if both inputs are 1. Being a
complete basis means that any Boolean function can be
simulated by a combinatorial circuit all of whose gates are
exclusively two-input NAND gates.

In order to prove that a morphological neural network
is formally capable of solving any conventional computa-
tional problem, we simply construct a morphological neu-
ral network which is equivalent to a combinatorial cir-
cuit all of whose gates are exclusively two-input NAND



gates. The network is based on Equations 6 and 4 us-
ing the structure (Ro,, A, +'). By the duality criteria, we
could just as well use Equations 3 and 4 with the struc-
ture (R_o, V, +). The morphological network which will
simulate any such combinatorial circuit obeys the follow-
ing computational rules:

. t+1) = A ((lj(t) +’ w;j)

j=1
2. The value of the i-th neuron at time ¢ is given by
F(m(t +1)). Hence,

0 if i(t+1)>6;
a;(t) if Ti(t+1) =0;
1 if nt+1)<6;

ai(t+1)= (20)

3. The neurons a; fire at random, one at each discrete
time step.

These computational rules are applied at a neuron
when computing the next state, except at the input neu-
rons. At the input neurons, the function f is simply the
identity function f(z) =  so that a;(t + 1) = (¢ + 1).
The morphological network that will simulate a single
NAND gate is shown in Figure 1. Here the neurons a;
and ag receive input and the input gets moved (replicated)
into a3z and as. The initial state of a5 is arbitrary (i.e.,
simply assign either state O or state 1 to as). Thus, the
initial conditions are

01(0) = fl3(0) =2 (21)

a2(0) = a4(0) = z»
and a5(0) € {0,1} arbitrary chosen. The zero weights
between a; and a3, and between as and aq4, respectively,
serve as a buffer and prevents any parasitic feedback
should one of these neurons fire at random. In other
words, the states of the neurons a; and a, will not be
affected, no matter which neuron in the network examines
itself first. The threshold & = 1 is applied at neuron as.
Neural connections that are not shown are assumed to have
infinite weight co. Since we are taking minimums, they
do not affect the computation. The output of this network
is the state of the neuron ay after the net has stabilized. It
is not difficult to see that this network simulates a NAND
gate.

buffer outpm

input
XM@H;O/A

Fig. 1. A morphological net
simulation a NAND gate.
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To obtain a morphological network that simulates
a combinatorial circuit of NAND gates, we simply re-
place each NAND gate with the neural network equiva-
lent shown in Figure 2. For each input z;, we provide an
input neuron a; and an associated second neuron a; with
a buffer memory w;; = 0 = wj; between these two neu-
rons as shown in Figure 2. To prevent parasitic feedback
in the net, we simply increase weights and thresholds by
one each time we go from one gate to the next gate in the
cascade of the combinatorial circuit. Under these condi-
tions, the next neuron (=gate) will not be able to effect
the previous gate through its synaptic connection. Figure
2 illustrates this situation for three inputs. If as indicated
in the figure, a fourth input is added, then the next out-
put neuron would have threshold 3 = 3 and the weights
connecting to that output neuron would have all have the
same value w = 3.

) *O“_'O\//\//\

i: OO ““

. . }J—‘Q\/\
OO

Fig. 2. A morphological net simulation of a
three NAND gate combinatorial circuit.

>

This brute force approach only proves that any con-
ventional type of computational problem can be done us-
ing morphological neural nets. It does not consider issues
such as efficiency and peculiarities of morphological nets.
Obviously, computations at a neuron are generally more
efficient than those using classical models since only ad-
ditions and logic operations (max or mins) are involved.
Also, in the models that we have examined, which in-
clude morphological analogues of Hopfield nets, percep-
trons, and feed-forward nets with learning rules, conver-
gence is usually instantaneous or far more rapid than in
their classical counterparts.

4. Morphological Associative Memories

In classical neural network theory, for a given input
vector or key x = (21, ..., £,), an associative memory
W recalls a vector output signal f(y), wherey = W - x.
If f(y:) =y Vi, then f(y) = y and the memory is called
a linear associative memory. A basic question concerning
associative memories is: What is the simplest way to store
k vector pairs (xl,yl), e, (xk,yk), where x¢ € R”



andy¢ €R™ for£ =1, ..., k, in an m X n memory W?
The well-known answer to that question is to set

W=
§

yé - (x£). 22)

k
=1

In this case, the ijth entry of W is given by w;; =

k
o m.f. If the input patterns x*, ..., x* are orthonor-
£=1
mal, that is
iV L J1 ifi=7]
(xj) ‘x—{o ifi#j’ (23)
then

W = (y' (<) + o+ yE () ) =y @0

Thus, we have perfect recall of the output patterns
vy, ..., y* Ifx!, ..., x* are not orthonormal (which
they are not in most realistic cases), then the term

szyj . ((xj)'-xi) #0

i#j

(25)

is called the noise term and contributes to cross talk to
the recalled pattern by additively modulating the signal
term. Therefore filtering processes using threshold func-
tions become necessary in order to retrieve the desired
output pattern.

Morphological associative memories, which are
based on the lattice algebra described in the preceding
section, are surprisingly similar to these classical asso-
ciative memories. Suppose we are given a vector pair
x = (£1,..,2,) ER" and y = (¥1,...,9m) € R™.
An associative morphological memory that will recall the
vector y when presented the vector x is given by

Y1 — I Y1 — Tn
W=y&(-x) = (26)
Ym — T1 Ym — Tn
since W satisfies the equation W x = y as can be
verified by the simple computation
n
V (1 — =i + )
i=1
WMx= =y. 27

n :
_V1 (Ym — @i + 2i)
=

Note the similarity between Equation 22 and Equa-
tion 26 when k& = 1. In the linear domain, x' - x = 1
for a normalized vector. Equation 26 also incorporates a
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type of normalization for the pattern x in the sense that
(—x)' 8 x = 0, which represents the nultiplicative iden-
tity in the system (R_o, V,+). The natural question one
may ask is as to whether or not this concept can be ex-
tended to cases where k& > 1. The answer is a qualified
yes due to the fact that problems which in some way are
analogous to those associated with ordinary associative
memories (i.e., Equation 25) also occur in morphological
associative memories.

Henceforth, let (x!,y'), ..., (x*,¥*) be k vec-
’
(xf,...,xf,) € R® and y¢
1
yf,...,yfn) eR™ for £ = 1,...,k The optimal
morphological associative memory for recalling the vector

y¢ when presented with the pattern x¢ for £ =1,..., k
is given by

tor pairs with x¢

(28)

W= /k\ (yé (-—XE)’).
£=1

Before examining the claim of optimality a bit closer,
consider the following example.

Example 1. Let
0 0
x*=10}, y'=1|1],
0 0
0 -1
*=\|=-2}, ¥=|-1}, (29)
—4 0
0 0
x3=1-3], y3=1-2
0 0

OO N
=)

_2) .
0
(30)

It can be easily verified that WM x¢ = y¢ holds for

£ = 1,2,3. For example,
0
1] =y".
0

-10 0
€29

0
wWex={-2 1 =2|@|0
0 0 0 0



For the remainder of this section let W denote the
memory given by Equation 28. For §{ = 1, ...k, let
1

zf = (zf, eee, zfn) denote the output pattern when W is
presented with the input pattern x¢ (ie., W@ x¢ = 2%).
Thus, if 7 € {1,...,m} is an arbitrary index, then

n

zf = \/ ('U)ij + :135)

ij=

ey

n k
AV i &
<V (b -] ++)

j=1
:yf .

Since i was arbitrary, we have that 28 < y¢ (ie., 2} <
yf Vi =1, ..., m). This shows that

wWuxt <yt Vé=1,...,k. (33)

Now if A = (aij),, ,, is @ memory with the property

that AM x¢ = y€ for€ =1, ..., k, then for any arbitrary
index i € {1,...,m} the following equalities hold:

\/(a,-j+m§)=y§vg=1,...,k. G4
j=1
1t follows that for an arbitrary index j € {1,...,n} we
have
a;+af <yl VE=1,..k
& aj; gyf—xf VéE=1,...,k
& (35
< ajj < /\ (yf '-J“«f-):wij-
g=1
This shows that
A <W (i'e‘i a;; < wij sz]) (36)

Equations 33 and 36 provide the following optimality
criterion for W:
Whenever there exists a perfect recall memory A (i.e.,

AMxt =yt foré = 1,..., k), then
A<W and WRxf=y¢ VEé=1,...,k (37)

The next obvious question, of course, concerns the
existence of a perfect recall memory. Specifically, for
what vector pairs (x!,y?), ..., (x*,y*) will W provide
perfect recall? Once this question has been answered,
the next logical question is to inquire as to the amount
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of noise W can tolerate for perfect recall; ie., if X°
denotes a distorted version of x¢, what are the conditions
or bounds on %¢ to insure that W M %¢ = y*? We provide
some answers to these questions. However, due to space
limitations, we are not able to provide proofs here. The
mathematical verification of these answers will be given
elsewhere and are also available from the authors [21].
The following theorem answers the existence ques-
tion of perfect recall memories for sets of pattern pairs.

Theorem 1. WMx¢ =y¢ VE=1,...,k ifand
only if for each row indexti =1, ..., mthere exist column
indices j; € {1,...,n}, (E€{1,...,k}) such that

wijé:yf—xfé VeE=1,..., k.

(38)

We use the notation jé to denote the fact that the
column index j depends on the particular indices £ and i.

The following is an easy consequence of this theo-
rem.

Corollary 1. WWMxé = y¢ VeE=1,...,kif
and only if for each £ = 1,. ..,k there exists subsets
Je of {1,...,n} having property P(€), where P(£)
is the property: for each row indexi € {1, ... ,m}
there exist column indices ]é € J¢ which satisfy
wigs = 9§ — @ - (39)

Note that the matrix W given in Example 1 satisfies
the conditions of Theorem 1. For example, for £ = 2
we have,

mn= 1= -1-0=y} -2},
my=1= —1—(=2) = v% — 2%,

m31=0=0~0=y§—wf.

(40)

The following two theorems provide bounds for the
amount of distortion of the exemplar patterns x¢.

Theorem 2. Foragiveny € {1, ..., k} let J, be
a subset of {1, ... ,n} with property P(%). If X" is a
distorted version of the pattern X" with the property

-~

¢l =2a] Vjel,
and
~ " “4n
71 <alv AV [ - of +
=1 \{#y
ng‘]‘!a



Theorem 3. Fory = 1,...,k let X" denote the
distorted version of the pattern X". Then W M| X" =
y” if and only if the following hold

n
m}Sm;-’v/\ V[y:'—-yf-i-xf] Vi=1,...,

i=1

EFy

and if for each row indexi € {1, ..., m} there exists
a column index j; € {1, ..., n} such that

z] =

£ 13
]i—.’l}}iv v [y;y—yi + 5,

&Fv
A consequence of the proof of Theorem 1 [21] is that

for given exemplar patterns x” the following equivalence
holds:

Wex'<y”
n
& :c';’_<_x;-’v/\ \/ [y}—yf-l—:cf] (44)
E£y
Vi=1,...,n.

i=1

As a final note, we need to point out that the above
results are concerned with morphological perfect recall
memories. Similar to associative memories in the linear
domain that may not have perfect recall capabilities (e.g.,
Hopfield nets) to distorted input, etc, recall in morpholog-
ical associative memories can also be improved through
the use of iterative steps and the introduction of appropri-
ate threshold functions [21].

5. Single Layer Morphological Perceptrons

Let Z denote the set of integers and Z4,, = Z U
{oo, —oo}. In analogy to a single layer linear perceptron,
a single layer morphological perceptron is used to classify
a pattern p = (p1,p2,---,Pn) € L™ (ie, p; € Z for
i =1,...,n) into one of two classes. A single layer
morphological perceptron (SLMP) consists of a set of
weights

W ={w,ws,...,wn} € L% 45)
and a hard limiter function f : Zieo — {0, 1} given by
{1 if 2>0
fle)= {0 else . “6)

This formulation differs from the linear case where n + 1
weights are required.
In order to classify p € Z7, the perceptron first
n

calculates the maximum of sums g(p) = V [pi + wi
i=1

n
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and then applies the limiter function. If f o g(p) = 0, the
perceptron assigns p to class Cy. The pattern is assigned
to class C if fog(p) = 1.

n

The graph of 0 = g(x) = V [z; + w;]isan (n — 1)-

dimensional figure that divides IZ’:;:DO into two regions.
This area is called the perceptron’s decision surface. In
the 2—dimensional case, this decision surface corresponds
to an infinite step function as shown in Figure 3. Note
that a single layer linear perceptron cannot separate the
two classes shown.

..}v2

-w,

Fig. 3. Decision boundary for a
single layer morphological perceptron.

Before the perceptron can act as a classifier, the val-
ues of its weights must be determined. If the decision sur-
face is known a priori, the weights can be assigned analyti-
cally. Otherwise, the weights are determined in a learning
stage, in which the perceptron determines its own deci-
sion surface through a learning algorithm. Unlike learn-
ing algorithms for conventional single layer perceptrons,
the following learning algorithm for a single layer mor-
phological perceptron has only a finite number of steps.
Hence, the issue of convergence does not pose a problem.

Let {(pf , cE) }2;1 be a training set, where pé, &=
1,...,k are patterns in Z", and ¢, € {0, 1} are the class
numbers associated with the patterns pé. The leamning
algorithm below finishes with the set of weights w;(k),
i=1,...,n.

STEP 1. Set w;(0) = oo foralli =1,...,n.
STEP 2. Adjust the weights k times according to the
following rule: For £ = 1,...,k, compute

wi(€) = {
o))

IfflV pi+wi(k) ) < e forany € = 1,...,k,

i=1
then a single layer morphological perceptron is not

wiE-1) if f(Bf +wE-1))=c
- if pf+wil€—1)>c
Vi=1,...,n.



able to assign the patterns p® to the classes ¢; €
{0,1} forall £ = 1,...,k.

Clearly, this concept of a single layer morphological per-
ceptron presented above has the following advantages:

Simple and fast classification mode due to the mor-
phological operations used;

finite learning mode; no convergence problems;
numerical stability due to the fact that all basic op-
erations are performed in Zio.

However, this formulation of an SLMP only produces

a very limited class of decision surfaces. In order to
avoid these difficulties we introduced the concept of a
generalized SLMP in which the computation of g(p) =
n n

V pi + w; is replaced by g(p) = ao -

'Vl a;(pi + wi)

= =

i;vﬁcrc a; € {-1,1} for: =0, 1, ..., n. We established
a learning rule for this perceptron and have shown that a
three layer version of this net is able to create arbitrary
decision surfaces in 2%, [21].
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